Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

956 results about "Sodium Hypophosphite Monohydrate" patented technology

Sodium hypophosphite (NaPO2H2, also known as sodium phosphinate) is the sodium salt of hypophosphorous acid and is often encountered as the monohydrate, NaPO2H2·H2O.

Chemical nickel-plating method for carbon fiber

The invention discloses a chemical nickel-plating method for carbon fiber, which is designed for overcoming the disadvantages of high cost, a large number of process steps and poor operability existing in the prior art. In the method, a chemical plating process is adopted; and a pre-treatment is performed on a raw material and chemical plating solution is prepared before the chemical plating. The pre-treatment process comprises the steps of: calcining by using a muffle furnace to remove glue; soaking in solution of absolute ethanol to remove oil; performing surface roughening and activating treatment by using solution of sodium hydroxide and solution of silver ammonia; sensitizing by using a sensitizer, namely stannous chloride; and performing surface reduction by using solution of sodium hypophosphite. The chemical plating solution consists of nickel sulfate hexahydrate, sodium hypophosphite, sodium pyrophosphate and sodium citrate. The chemical nickel-plating on the carbon fiber is finished by placing a pre-treatment product of the chemical plating into the chemical plating solution, and reacting, standing, filtering and drying under a chemical plating condition. The method has the characteristics that: the product has a uniform surface, a compact plating layer and uniform particles.
Owner:沈阳临德陶瓷研发有限公司

Magnesium alloy direct chemical plating NI-P-SiC plating solution formula and plating process

The invention provides a magnesium alloy direct chemical plating NI-P-SiC plating solution formula and a plating process. The formula consists of chemical plating Ni-P plating solution and SiC dispersing solution, wherein the chemical plating Ni-P plating solution comprises 20-30g/l of nickel sulfate, 20-30g/l of sodium hypophosphite, 15-30g/l of complexing agent, 15-25g/l of sodium acefate, 10-20g/l of fluoride, 1-2mg/l of stablizer, appropriate amount of PH value modifier and the balance of water; the SiC dispersing solution is formed by stirring 10-80mg/l of surface active agent and 1-8g/lof micron SiC by magnetic force; and after pretreatment of the magnesium alloy, a Ni-P-SiC composite plating layer with thickness being 20-50Mum is obtained under the process conditions that the temperature is 80-90 DEG C, the PH value is 4.8-5.6, and the plating time is 60-120 minutes. In the invention, basic nickel carbonate is replaced by nickel sulfate which is introduced as main salt; and themicron SiC is added to conduct plating directly; on the base of keeping the excellent performance of magnesium alloy chemical plating Ni-P alloy, the rigidity and abrasive resistance of the magnesiumalloy chemical plating layer are greatly improved; the problem of lower abrasive resistance of magnesium alloy nickel-plating layer is solved; and the preparation of the plating solution is convenient, the cost is low, the plating solution is stable and the deposition rate is quick.
Owner:CHONGQING UNIV OF TECH

Pd/Ce0.8Zr0.2O2/cordierite honeycomb ceramic monolithic catalyst, preparation method and application thereof

The invention discloses a Pd/Ce0.8Zr0.2O2/cordierite honeycomb ceramic monolithic catalyst, a preparation method and application thereof. The catalyst is prepared by taking cordierite honeycomb ceramic which is eroded by hydrochloric acid as a first carrier, a cerium-zirconium composite oxide as a second carrier, and a precious metal, namely palladium (Pd) as an active ingredient; preparing a cerium-zirconium composite coating on the cordierite carrier by an immersion method; immersing the carrier into plating solution; and directly reducing palladium onto the cordierite honeycomb ceramic coated with the cerium-zirconium composite coating by the redox reaction of palladium chloride and sodium hypophosphite and the self-catalysis of the palladium. The preparation method improves the oxygen storage performance of the catalyst, improves high-temperature resistance, and realizes uniform load of nano-palladium particles on the carriers without embedding active sites; moreover, the using amount of the palladium is small, the utilization rate of the palladium is improved, the process is simple, the preparation period is short, and the production cost is low. The monolithic catalyst prepared by the method has high activity and high stability; and the methylbenzene can be oxidized into harmless carbon dioxide (CO2) and water (H2O) in the presence of the catalyst at the temperature of 220 to 300 DEG C.
Owner:GUANGDONG UNIV OF TECH

Semi-bright lead-free chemical tinning liquid and using method thereof

InactiveCN101717929AEnables continuous autocatalytic depositionFast depositionLiquid/solution decomposition chemical coatingThioureaBenzaldehyde
The invention discloses new semi-bright lead-free chemical tinning liquid and a using method thereof. A semi-bright silver tin-copper alloy chemical plating layer is obtained on copper and copper alloy matrix. In the chemical plating liquid, tin sulfate is used as a main salt, thiourea is used as a main complexing agent, citric acid is used as an auxiliary complexing agent, sodium hypophosphite is used as a reducing agent, ethylene diamine tetraacetic acid is used as an antioxidant, sulfuric acid is used as a stabilizing agent, gelatin is used as a leveling agent, and benzaldehyde is used as an auxiliary brightening agent. The pH value of the plating liquid is 0.8 to 2.0, the temperature of the plating liquid is between 80 and 90 DEG C, the carrying capacity of the plating liquid is 0.8 to 1.5dm2/L, and the mechanical stirring speed is 50 to 100 rpm. The continuous self-catalytic deposition of tin is implemented on the copper and copper alloy matrix, plating layers of different thicknesses can be obtained by controlling the chemical plating time, and the deposition speed is high; crystalline grains are obviously refined, the surface flatness of the plating layer is improved, and the plating surface area is large; the plating layer and the matrix are combined firmly; and after passivating treatment, the change resistance of the plating layer is high. The technology has broad application prospect in products such as deep hole pieces, blind hole pieces, small-sized electronic parts and components which are difficult to process, printed circuit boards (PCB) and the like.
Owner:KUNMING UNIV OF SCI & TECH

Preparation method of porous cobalt phosphide nanowire catalyst

The invention discloses a preparation method of a porous cobalt phosphide nanowire catalyst. The method comprises the following steps that a solution is prepared by taking urea as a precipitant, taking cobalt sulfate hepathydrate as a cobalt source and taking glycerin and deionized water as solvents; the solution is added into a high pressure reactor for a hydrothermal reaction, after sufficient reaction is achieved, suction filtration and washing are conducted, vacuum drying is conducted, and then linear basic cobalt carbonate is obtained; in a tubular furnace, air burning is conducted on the linear basic cobalt carbonate at certain temperature, and cobaltosic oxide is obtained; and sodium hypophosphite serves as a phosphorus source, a cobaltosic oxide precursor and sodium hypophosphite are placed at the two ends of the same porcelain boat according to a certain proportion, the phosphorus source is placed at the upper stream of airflow, the treated porcelain boat is put into the tubular furnace for lower temperature calcination in an inert atmosphere, and preparation of the porous cobalt phosphide nanowire catalyst is achieved. The preparation method of the porous cobalt phosphide nanowire catalyst has the advantages that the production technology is simple, the cost is low, electrochemical activity and stability of the catalyst can be effectively improved, and the method is wide in application.
Owner:NANCHANG HANGKONG UNIVERSITY

Electroplating pretreatment method for acrylonitrile butadiene styrene (ABS) plastic surface

The invention relates to an electroplating pretreatment method for an acrylonitrile butadiene styrene (ABS) plastic surface. The electroplating pretreatment method comprises the following process steps of: eliminating stress, performing alkali washing for oil removal, pickling, roughening, performing neutralizing treatment, performing chemical activation, and performing the conventional electroplating, wherein in the chemical activation process, plastic base materials are put in to an activation solution and are subjected to hyperthermic treatment in a water bath for a certain period of time, each liter of the activation solution comprises 10 to 12g of nickel sulfate, 20 to 25g of sodium hypophosphite and 5 to 8g of sodium citrate, the pH is 9 to 11, and the temperature is between 70 and 75 DEG C. In the invention, a novel method in which metal palladium activation is not used is provided, can be used for replacing a sodium borohydride and methanol activation process and contributes to environment friendliness; and on the basis of pretreatment, the plastic surface can be directly electroplated, so that the problems of complicated treating processes, high PdCl2 prices, high pollution possibility of a plating solution and the like are solved.
Owner:SHENYANG POLYTECHNIC UNIV

Preparation method of integral type catalyst with low content of noble metal and application thereof

The invention discloses a preparation method of an integral type catalyst with low content of noble metal and an application thereof. In the invention, the preparation method comprises the following steps of: adopting a chemical plating method, utilizing hydrazine or sodium hypophosphite as a reducer, generating an oxidation-reduction reaction with palladium chloride or chloroplatinic acid in a plating bath and depositing metallic Pd and/or Pt on the surface of a cordierite honeycomb ceramic pore canal directly under the autocatalytic action of Pd or Pt simultaneously so as to obtain a load-type integral type catalyst with low content of the noble metal of the Pt and/or the Pd; the integral type catalyst with the noble metal, which is prepared by the invention, is applied to the purifying treatment of the catalytic combustion of toluene; though the content of the noble metal in the integral type catalyst prepared by the invention is only 0.12-0.60wt%, the conversion rate of the toluene reaches 99% at the lower temperature of 186-244 DEG C when the integral type catalyst is used for the purifying treatment of the catalytic combustion of the toluene, and the concentration of the toluene is lowered below 40mg/m<3>; and the invention is the integral type catalyst for treating VOCs (volatile organic chemicals) by low-temperature catalytic combustion, which has lower cost, simple preparation and obvious purifying effect.
Owner:FOSHAN SHUNDE KINGLEI ENVIRONMENT & TECH CO LTD

Pulse-electrodeposited Ni-Co-P/HBN composite plating and preparation method thereof

InactiveCN102534732AImprove electrodeposition efficiencyEasy to useElectrolytic coatingsPolyvinyl alcoholHexagonal boron nitride
A pulse-electrodeposited Ni-Co-P/HBN composite plating and a preparation method thereof. The preparation method adopts a metal material as a substrate, and comprises the following steps: firstly pretreating the substrate surface, preparing a composite plating solution with nickel sulfate, cobalt chloride, sodium hypophosphite, citric acid, trisodium citrate, boric acid, and polyvinyl alcohol as main components and hexagonal boron nitride HBN powder as a dispersed phase, performing surface modification and dispersion treatment of the HBN particles by using a surfactant through ultrasonic vibration, allowing the HBN particles to disperse uniformly in the plating solution through reasonable setting of pulse electrodeposition parameters and full stirring, performing codeposition and heat treatment of the HBN particles and the substrate metal nickel cobalt phosphor in a state of applying pulsed current so as to obtain a corrosion-resistant, wear-resistant and antifriction pulse-electrodeposited Ni-Co-P/HBN composite plating. The invention overcomes defects of single component of current composite plating, coarse plating crystal grain, low interface bonding strength with the substrate, non-ideal comprehensive properties of corrosion resistance, wear resistance, and antifriction, and the like; the pulse-electrodeposited Ni-Co-P/HBN composite plating of the invention is applicable to wear-resistant, antifriction and corrosion-resistant surface plating of friction kinematic pair parts in industries of machinery, metallurgy, chemical engineering, and the like.
Owner:HUNAN UNIV OF SCI & TECH

Electrodeposition preparation method of carbon nanotube/transition metal compound composite material

The invention provides an electrodeposition preparation method of a carbon nanotube/transition metal compound composite material. The method comprises the following steps: adding carbon nanotubes into a solvent, carrying out ultrasonic treatment to obtain a suspension, adding the suspension to a preprocessed glassy carbon electrode surface in a dropwise manner, and naturally air-drying to form a uniform carbon nanotube thin layer in order to obtain a carbon nanotube modified glassy carbon electrode; adding a precursor A and a support electrolyte into deionized water, adding a precursor B when necessary, and adjusting the pH value to 0-13 by boric acid and/or sodium hypophosphite to obtain an electroplating solution; and electroplating the carbon nanotube modified glassy carbon electrode in the electroplating solution, cleaning with water, naturally drying at normal temperature, and scrapping a carbon nanotube/transition metal compound composite material off the surface of the glassy carbon electrode by using a blade to obtain the carbon nanotube/transition metal compound composite material. The method has the advantages of simple operation and easy large scale production; and the prepared composite material has great advantages in catalytic hydrogen evolution and energy conversion, and can be applied in the fields of production of hydrogen through photocatalytic water decomposition, and photoelectric conversion.
Owner:WENZHOU UNIVERSITY

Pt doped phosphatizing cobalt bead catalyst carried by methanol carbon dioxide and preparation method of Pt doped phosphatizing cobalt bead catalyst

The invention discloses Pt doped phosphatizing cobalt bead catalyst carried by methanol carbon dioxide and a preparation method of the Pt doped phosphatizing cobalt bead catalyst. The catalyst is Pt-CoP/C, and the preparation method mainly comprises the following steps: uniformly dispersing a carbon material to a solution of dehydrated alcohol and deionized water, adding cobalt salt and strong ammonia water, and through a heating reflow reaction, generating carbon-carrying cobalt complex compound solution; transmitting the solution into a polytetrafluoroethylene reaction kettle, and performing water heating so as to obtain a carbon-carrying cobaltosic oxide material; mixing the carbon-carrying cobaltosic oxide material with sodium hypophosphite, performing grinding so as to obtain a mixture, and transmitting the mixture to a high-temperature tuber furnace filled with protective gas; preforming heating treatment so as to obtain a CoP/C material, dispersing the CoP/C material to the mixed solution of ethanediol and the deionized water, adding a chloroplatinic acid solution, and then performing a heating reflow reaction so as to obtain a Pt-CoP/C catalyst. Compared with conventional business Pt/C, according to the prepared catalyst disclosed by the invention, the methanol oxidation activity and stability are significantly improved.
Owner:HUAZHONG UNIV OF SCI & TECH

Sulfur-doped cobalt phosphide - carbon nanofiber composite material and preparation method thereof

The invention discloses a sulfur-doped cobalt phosphide - carbon nanofiber composite material and a preparation method thereof. The preparation method comprises the following steps of electrospinning a polyacrylonitrile dispersion liquid to obtain a polyacrylonitrile nanofiber membrane; pre-oxidizing the polyacrylonitrile nanofiber membrane and performing heating and carbonization to obtain a carbon nanofiber membrane, and causing the carbon nanofiber membrane to undergo surface hydrophilic treatment, to obtain a carbon nanofiber pretreatment membrane; proportionally dispersing cobalt salt and thiourea in an organic solvent, and then causing the dispersion liquid and the carbon nanofiber pretreatment membrane to be subjected to a solvothermal reaction to obtain a cobalt sulphide / carbon nanofiber composite material; and causing the cobalt sulphide / carbon nanofiber composite material to undergo phosphorylation reaction with sodium hypophosphite to prepare the sulfur-doped cobalt phosphide - carbon nanofiber composite material. The prepared composite material is controllable in morphology, has high specific surface area and excellent conductivity, and can be used as an ideal high-performance electrocatalytic material as well as an electrode material of new energy devices such as supercapacitors and lithium-ion batteries.
Owner:DONGHUA UNIV

Plating solution for plating nickel and phosphorus on surface of magnesium lithium alloy and low-temperature plating method

The invention relates to a plating solution for plating nickel and phosphorus on a surface of magnesium lithium alloy. 1 L of the plating solution consists the following components: 25-35 g of main salt nickel sulfate, 25-35 g of reducing agent sodium hypophosphite, 5-10 g of complexing agent citric acid, 10-15 g of corrosion inhibitor ammonium hydrogen fluoride, 10-15 mL of accelerator hydrofluoric acid, 0-2 mg of stabilizer thiourea and 0.5-5 mg of brightener lauryl sodium sulfate. A low-temperature plating method comprises the following steps of: performing surface grinding on a magnesium lithium alloy workpiece; degreasing; performing alkali washing; performing acid washing; activating; and finally placing the magnesium lithium alloy workpiece into the plating solution for plating nickel and phosphorus on the surface of the magnesium lithium alloy, and plating. According to the plating solution, the nickel sulfate serves as the main salt, and the corrosion inhibitor and the brightener are added, so the matrix can be prevented from being corroded in the chemical nickel phosphorus plating process of the magnesium lithium alloy, the obtained plating layer is uniform, compact and bright, the nickel phosphorus plating layer has a good binding force and good corrosion resistance, the surface of the magnesium lithium alloy is effectively protected, and a good decorative effect is achieved.
Owner:镁高镁诺奖(铜川)新材料有限公司
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products